Problem 1. Calculate the norms of the following operators:

- (a) $f \in L^{\infty}[0,1], M_f : L^2[0,1] \to L^2[0,1], (M_fg)(x) = f(x)g(x).$
- (b) $g \in C[0,1], T_g: C[0,1] \to \mathbb{C}, T_g x = \int_0^1 g(t) x(t) dt.$

Problem 2. Show that the convolution $f * g(x) = \int f(x-y) g(y) dy$ of two functions $f, g \in L_1(\mathbb{R})$ is well-defined for $||f * g||_1 \leq ||f||_1 ||g||_1$.

Problem 3. Show that every bounded sequence in a Hilbert space has a weakly convergent subsequence.

Problem 4. A linear operator $T \in B(\mathcal{H})$ achieves its norm if there is a unit vector $x \in \mathcal{H}$ such that ||T|| = ||Tx||. Give examples of bounded self-adjoint operators that do not achieve their norm and

(a) have an orthonormal basis of eigenvectors,

(b) does not have eigenvectors.

Problem 5. Let \mathcal{H} be a Hilbert space and $K \subseteq \mathcal{H}$ be a convex subset. An element $x \in K$ is called an *extreme point* if for all $x_0, x_1 \in K$ and for all $\lambda \in]0, 1[$

 $(1-\lambda)x_0 + \lambda x_1 = x \implies x_0 = x_1 = x.$

- (a) Show that every unit vector is an extreme point of the unit sphere $B_{\mathcal{H}}(0,1)$.
- (b) Show that every isometric linear operator $V \in B(\mathcal{H})$ is an extreme point of the unit sphere $B_{B(\mathcal{H})}(0,1)$.

Problem 6. Let \mathcal{H} be a Hilbert space with scalar product $\langle ., . \rangle$ and $A \in B(\mathcal{H})_+$ a positive semi-definite linear operator. Show the following:

(a) that

 $\langle x, y \rangle_A := \langle Ax, y \rangle$

defines a positive semi-definite sesquilinear form,

(b)

 $||A|| = \min\{a \in \mathbb{R} \mid A \le aI\},\$

- (c) the inner product $\langle ., . \rangle_A$ is positive definite if and only if ker $A = \{0\}$,
- (d) in the case where ker $A = \{0\}$ holds, the induced norm $||x||_A = \langle Ax, x \rangle^{1/2}$ is equivalent to the original norm $||x|| = \langle x, x \rangle^{1/2}$ if and only if A has a bounded inverse,
- (e) Let A be invertible and $T \in B(\mathcal{H})$ be another operator with adjoint T^* . Find a formula for the adjoint of T with respect to the scalar product $\langle ., . \rangle_A$.